import pandas as pd
import numpy as np
import math
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
pip install mysql.connector
Requirement already satisfied: mysql.connector in c:\users\simon\anaconda3\lib\site-packages (2.2.9) Note: you may need to restart the kernel to use updated packages.
import mysql.connector
import pandas as pd
mydb = mysql.connector.connect(
host="localhost",
port="3317",
user="root",
password="***",
)
cursor = mydb.cursor()
cursor.execute('USE formula 1')
cursor.execute('SELECT * FROM circuits')
table_rows = cursor.fetchall()
df = pd.DataFrame(table_rows)
df
--------------------------------------------------------------------------- ProgrammingError Traceback (most recent call last) ~\AppData\Local\Temp/ipykernel_28564/456834254.py in <module> 8 ) 9 cursor = mydb.cursor() ---> 10 cursor.execute('USE formula 1') 11 cursor.execute('SELECT * FROM circuits') 12 table_rows = cursor.fetchall() ~\anaconda3\lib\site-packages\mysql\connector\cursor.py in execute(self, operation, params, multi) 549 else: 550 try: --> 551 self._handle_result(self._connection.cmd_query(stmt)) 552 except errors.InterfaceError: 553 if self._connection._have_next_result: # pylint: disable=W0212 ~\anaconda3\lib\site-packages\mysql\connector\connection.py in cmd_query(self, query, raw, buffered, raw_as_string) 488 if not isinstance(query, bytes): 489 query = query.encode('utf-8') --> 490 result = self._handle_result(self._send_cmd(ServerCmd.QUERY, query)) 491 492 if self._have_next_result: ~\anaconda3\lib\site-packages\mysql\connector\connection.py in _handle_result(self, packet) 393 return self._handle_eof(packet) 394 elif packet[4] == 255: --> 395 raise errors.get_exception(packet) 396 397 # We have a text result set ProgrammingError: 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '1' at line 1
results = pd.read_csv('C:\\Users\\simon\\F1\\results.csv')
results
resultId | raceId | driverId | constructorId | number | grid | position | positionText | positionOrder | points | laps | time | milliseconds | fastestLap | rank | fastestLapTime | fastestLapSpeed | statusId | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 18 | 1 | 1 | 22 | 1 | 1 | 1 | 1 | 10.0 | 58 | 1:34:50.616 | 5690616 | 39 | 2 | 1:27.452 | 218.300 | 1 |
1 | 2 | 18 | 2 | 2 | 3 | 5 | 2 | 2 | 2 | 8.0 | 58 | +5.478 | 5696094 | 41 | 3 | 1:27.739 | 217.586 | 1 |
2 | 3 | 18 | 3 | 3 | 7 | 7 | 3 | 3 | 3 | 6.0 | 58 | +8.163 | 5698779 | 41 | 5 | 1:28.090 | 216.719 | 1 |
3 | 4 | 18 | 4 | 4 | 5 | 11 | 4 | 4 | 4 | 5.0 | 58 | +17.181 | 5707797 | 58 | 7 | 1:28.603 | 215.464 | 1 |
4 | 5 | 18 | 5 | 1 | 23 | 3 | 5 | 5 | 5 | 4.0 | 58 | +18.014 | 5708630 | 43 | 1 | 1:27.418 | 218.385 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
25394 | 25400 | 1073 | 815 | 9 | 11 | 4 | 15 | 15 | 15 | 0.0 | 55 | \N | \N | 51 | 2 | 1:26.419 | 219.993 | 5 |
25395 | 25401 | 1073 | 849 | 3 | 6 | 16 | \N | R | 16 | 0.0 | 50 | \N | \N | 30 | 15 | 1:29.293 | 212.912 | 3 |
25396 | 25402 | 1073 | 841 | 51 | 99 | 14 | \N | R | 17 | 0.0 | 33 | \N | \N | 33 | 16 | 1:29.442 | 212.557 | 6 |
25397 | 25403 | 1073 | 847 | 3 | 63 | 17 | \N | R | 18 | 0.0 | 26 | \N | \N | 23 | 19 | 1:30.647 | 209.732 | 6 |
25398 | 25404 | 1073 | 8 | 51 | 7 | 18 | \N | R | 19 | 0.0 | 25 | \N | \N | 23 | 18 | 1:29.698 | 211.951 | 23 |
25399 rows × 18 columns
circuits = pd.read_csv('C:\\Users\\simon\\F1\\circuits.csv')
circuits
circuitId | circuitRef | name | location | country | lat | lng | alt | url | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | albert_park | Albert Park Grand Prix Circuit | Melbourne | Australia | -37.84970 | 144.96800 | 10 | http://en.wikipedia.org/wiki/Melbourne_Grand_P... |
1 | 2 | sepang | Sepang International Circuit | Kuala Lumpur | Malaysia | 2.76083 | 101.73800 | 18 | http://en.wikipedia.org/wiki/Sepang_Internatio... |
2 | 3 | bahrain | Bahrain International Circuit | Sakhir | Bahrain | 26.03250 | 50.51060 | 7 | http://en.wikipedia.org/wiki/Bahrain_Internati... |
3 | 4 | catalunya | Circuit de Barcelona-Catalunya | Montmeló | Spain | 41.57000 | 2.26111 | 109 | http://en.wikipedia.org/wiki/Circuit_de_Barcel... |
4 | 5 | istanbul | Istanbul Park | Istanbul | Turkey | 40.95170 | 29.40500 | 130 | http://en.wikipedia.org/wiki/Istanbul_Park |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
74 | 75 | portimao | Autódromo Internacional do Algarve | Portimão | Portugal | 37.22700 | -8.62670 | 108 | http://en.wikipedia.org/wiki/Algarve_Internati... |
75 | 76 | mugello | Autodromo Internazionale del Mugello | Mugello | Italy | 43.99750 | 11.37190 | 255 | http://en.wikipedia.org/wiki/Mugello_Circuit |
76 | 77 | jeddah | Jeddah Street Circuit | Jeddah | Saudi Arabia | 21.54330 | 39.17280 | 15 | http://en.wikipedia.org/wiki/Jeddah_Street_Cir... |
77 | 78 | losail | Losail International Circuit | Al Daayen | Qatar | 25.49000 | 51.45420 | \N | http://en.wikipedia.org/wiki/Losail_Internatio... |
78 | 79 | miami | Miami International Autodrome | Miami | United States | 25.95810 | -80.23890 | \N | https://en.wikipedia.org/wiki/Miami_Internatio... |
79 rows × 9 columns
cons_res = pd.read_csv('C:\\Users\\simon\\F1\\constructor_results.csv')
cons_res
constructorResultsId | raceId | constructorId | points | status | |
---|---|---|---|---|---|
0 | 1 | 18 | 1 | 14.0 | \N |
1 | 2 | 18 | 2 | 8.0 | \N |
2 | 3 | 18 | 3 | 9.0 | \N |
3 | 4 | 18 | 4 | 5.0 | \N |
4 | 5 | 18 | 5 | 2.0 | \N |
... | ... | ... | ... | ... | ... |
11945 | 16445 | 1073 | 214 | 6.0 | \N |
11946 | 16446 | 1073 | 117 | 0.0 | \N |
11947 | 16447 | 1073 | 210 | 0.0 | \N |
11948 | 16448 | 1073 | 3 | 0.0 | \N |
11949 | 16449 | 1073 | 51 | 0.0 | \N |
11950 rows × 5 columns
cons_standings = pd.read_csv('C:\\Users\\simon\\F1\\constructor_standings.csv')
cons_standings
constructorStandingsId | raceId | constructorId | points | position | positionText | wins | |
---|---|---|---|---|---|---|---|
0 | 1 | 18 | 1 | 14.0 | 1 | 1 | 1 |
1 | 2 | 18 | 2 | 8.0 | 3 | 3 | 0 |
2 | 3 | 18 | 3 | 9.0 | 2 | 2 | 0 |
3 | 4 | 18 | 4 | 5.0 | 4 | 4 | 0 |
4 | 5 | 18 | 5 | 2.0 | 5 | 5 | 0 |
... | ... | ... | ... | ... | ... | ... | ... |
12711 | 27938 | 1074 | 210 | 0.0 | 6 | - | 0 |
12712 | 27939 | 1074 | 1 | 0.0 | 7 | - | 0 |
12713 | 27940 | 1074 | 131 | 0.0 | 8 | - | 0 |
12714 | 27941 | 1074 | 9 | 0.0 | 9 | - | 0 |
12715 | 27942 | 1074 | 3 | 0.0 | 10 | - | 0 |
12716 rows × 7 columns
constructors = pd.read_csv('C:\\Users\\simon\\F1\\constructors.csv')
constructors
constructorId | constructorRef | name | nationality | url | |
---|---|---|---|---|---|
0 | 1 | mclaren | McLaren | British | http://en.wikipedia.org/wiki/McLaren |
1 | 2 | bmw_sauber | BMW Sauber | German | http://en.wikipedia.org/wiki/BMW_Sauber |
2 | 3 | williams | Williams | British | http://en.wikipedia.org/wiki/Williams_Grand_Pr... |
3 | 4 | renault | Renault | French | http://en.wikipedia.org/wiki/Renault_in_Formul... |
4 | 5 | toro_rosso | Toro Rosso | Italian | http://en.wikipedia.org/wiki/Scuderia_Toro_Rosso |
... | ... | ... | ... | ... | ... |
206 | 209 | manor | Manor Marussia | British | http://en.wikipedia.org/wiki/Manor_Motorsport |
207 | 210 | haas | Haas F1 Team | American | http://en.wikipedia.org/wiki/Haas_F1_Team |
208 | 211 | racing_point | Racing Point | British | http://en.wikipedia.org/wiki/Racing_Point_F1_Team |
209 | 213 | alphatauri | AlphaTauri | Italian | http://en.wikipedia.org/wiki/Scuderia_AlphaTauri |
210 | 214 | alpine | Alpine F1 Team | French | http://en.wikipedia.org/wiki/Alpine_F1_Team |
211 rows × 5 columns
driver_standings = pd.read_csv('C:\\Users\\simon\\F1\\driver_standings.csv')
driver_standings
driverStandingsId | raceId | driverId | points | position | positionText | wins | |
---|---|---|---|---|---|---|---|
0 | 1 | 18 | 1 | 10.0 | 1 | 1 | 1 |
1 | 2 | 18 | 2 | 8.0 | 2 | 2 | 0 |
2 | 3 | 18 | 3 | 6.0 | 3 | 3 | 0 |
3 | 4 | 18 | 4 | 5.0 | 4 | 4 | 0 |
4 | 5 | 18 | 5 | 4.0 | 5 | 5 | 0 |
... | ... | ... | ... | ... | ... | ... | ... |
33389 | 70776 | 1074 | 840 | 0.0 | 16 | - | 0 |
33390 | 70777 | 1074 | 852 | 0.0 | 17 | - | 0 |
33391 | 70778 | 1074 | 830 | 0.0 | 18 | - | 0 |
33392 | 70779 | 1074 | 20 | 0.0 | 19 | - | 0 |
33393 | 70780 | 1074 | 855 | 0.0 | 20 | - | 0 |
33394 rows × 7 columns
drivers = pd.read_csv('C:\\Users\\simon\\F1\\drivers.csv')
drivers
driverId | driverRef | number | code | forename | surname | dob | nationality | url | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | hamilton | 44 | HAM | Lewis | Hamilton | 1985-01-07 | British | http://en.wikipedia.org/wiki/Lewis_Hamilton |
1 | 2 | heidfeld | \N | HEI | Nick | Heidfeld | 1977-05-10 | German | http://en.wikipedia.org/wiki/Nick_Heidfeld |
2 | 3 | rosberg | 6 | ROS | Nico | Rosberg | 1985-06-27 | German | http://en.wikipedia.org/wiki/Nico_Rosberg |
3 | 4 | alonso | 14 | ALO | Fernando | Alonso | 1981-07-29 | Spanish | http://en.wikipedia.org/wiki/Fernando_Alonso |
4 | 5 | kovalainen | \N | KOV | Heikki | Kovalainen | 1981-10-19 | Finnish | http://en.wikipedia.org/wiki/Heikki_Kovalainen |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
849 | 851 | aitken | 89 | AIT | Jack | Aitken | 1995-09-23 | British | http://en.wikipedia.org/wiki/Jack_Aitken |
850 | 852 | tsunoda | 22 | TSU | Yuki | Tsunoda | 2000-05-11 | Japanese | http://en.wikipedia.org/wiki/Yuki_Tsunoda |
851 | 853 | mazepin | 9 | MAZ | Nikita | Mazepin | 1999-03-02 | Russian | http://en.wikipedia.org/wiki/Nikita_Mazepin |
852 | 854 | mick_schumacher | 47 | MSC | Mick | Schumacher | 1999-03-22 | German | http://en.wikipedia.org/wiki/Mick_Schumacher |
853 | 855 | zhou | \N | ZHO | Guanyu | Zhou | 1999-05-30 | Chinese | https://en.wikipedia.org/wiki/Guanyu_Zhou |
854 rows × 9 columns
lap_times = pd.read_csv('C:\\Users\\simon\\F1\\lap_times.csv')
lap_times
raceId | driverId | lap | position | time | milliseconds | |
---|---|---|---|---|---|---|
0 | 841 | 20 | 1 | 1 | 1:38.109 | 98109 |
1 | 841 | 20 | 2 | 1 | 1:33.006 | 93006 |
2 | 841 | 20 | 3 | 1 | 1:32.713 | 92713 |
3 | 841 | 20 | 4 | 1 | 1:32.803 | 92803 |
4 | 841 | 20 | 5 | 1 | 1:32.342 | 92342 |
... | ... | ... | ... | ... | ... | ... |
514587 | 1073 | 847 | 22 | 15 | 1:30.821 | 90821 |
514588 | 1073 | 847 | 23 | 15 | 1:30.647 | 90647 |
514589 | 1073 | 847 | 24 | 14 | 1:31.577 | 91577 |
514590 | 1073 | 847 | 25 | 16 | 1:32.794 | 92794 |
514591 | 1073 | 847 | 26 | 18 | 2:46.262 | 166262 |
514592 rows × 6 columns
pit_stops = pd.read_csv('C:\\Users\\simon\\F1\\pit_stops.csv')
pit_stops
raceId | driverId | stop | lap | time | duration | milliseconds | |
---|---|---|---|---|---|---|---|
0 | 841 | 153 | 1 | 1 | 17:05:23 | 26.898 | 26898 |
1 | 841 | 30 | 1 | 1 | 17:05:52 | 25.021 | 25021 |
2 | 841 | 17 | 1 | 11 | 17:20:48 | 23.426 | 23426 |
3 | 841 | 4 | 1 | 12 | 17:22:34 | 23.251 | 23251 |
4 | 841 | 13 | 1 | 13 | 17:24:10 | 23.842 | 23842 |
... | ... | ... | ... | ... | ... | ... | ... |
8823 | 1073 | 840 | 2 | 52 | 18:22:55 | 22.661 | 22661 |
8824 | 1073 | 815 | 3 | 53 | 18:23:09 | 21.385 | 21385 |
8825 | 1073 | 854 | 2 | 52 | 18:23:42 | 22.070 | 22070 |
8826 | 1073 | 852 | 2 | 53 | 18:24:01 | 21.909 | 21909 |
8827 | 1073 | 842 | 2 | 54 | 18:25:56 | 21.920 | 21920 |
8828 rows × 7 columns
qualy = pd.read_csv('C:\\Users\\simon\\F1\\qualifying.csv')
qualy
qualifyId | raceId | driverId | constructorId | number | position | q1 | q2 | q3 | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 18 | 1 | 1 | 22 | 1 | 1:26.572 | 1:25.187 | 1:26.714 |
1 | 2 | 18 | 9 | 2 | 4 | 2 | 1:26.103 | 1:25.315 | 1:26.869 |
2 | 3 | 18 | 5 | 1 | 23 | 3 | 1:25.664 | 1:25.452 | 1:27.079 |
3 | 4 | 18 | 13 | 6 | 2 | 4 | 1:25.994 | 1:25.691 | 1:27.178 |
4 | 5 | 18 | 2 | 2 | 3 | 5 | 1:25.960 | 1:25.518 | 1:27.236 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
9130 | 9171 | 1073 | 849 | 3 | 6 | 16 | 1:24.338 | \N | \N |
9131 | 9172 | 1073 | 847 | 3 | 63 | 17 | 1:24.423 | \N | \N |
9132 | 9173 | 1073 | 8 | 51 | 7 | 18 | 1:24.779 | \N | \N |
9133 | 9174 | 1073 | 854 | 210 | 47 | 19 | 1:24.906 | \N | \N |
9134 | 9175 | 1073 | 853 | 210 | 9 | 20 | 1:25.685 | \N | \N |
9135 rows × 9 columns
races = pd.read_csv('C:\\Users\\simon\\F1\\races.csv')
races
raceId | year | round | circuitId | name | date | time | url | |
---|---|---|---|---|---|---|---|---|
0 | 1 | 2009 | 1 | 1 | Australian Grand Prix | 2009-03-29 | 06:00:00 | http://en.wikipedia.org/wiki/2009_Australian_G... |
1 | 2 | 2009 | 2 | 2 | Malaysian Grand Prix | 2009-04-05 | 09:00:00 | http://en.wikipedia.org/wiki/2009_Malaysian_Gr... |
2 | 3 | 2009 | 3 | 17 | Chinese Grand Prix | 2009-04-19 | 07:00:00 | http://en.wikipedia.org/wiki/2009_Chinese_Gran... |
3 | 4 | 2009 | 4 | 3 | Bahrain Grand Prix | 2009-04-26 | 12:00:00 | http://en.wikipedia.org/wiki/2009_Bahrain_Gran... |
4 | 5 | 2009 | 5 | 4 | Spanish Grand Prix | 2009-05-10 | 12:00:00 | http://en.wikipedia.org/wiki/2009_Spanish_Gran... |
... | ... | ... | ... | ... | ... | ... | ... | ... |
1075 | 1092 | 2022 | 19 | 22 | Japanese Grand Prix | 2022-10-09 | 05:10:00 | https://en.wikipedia.org/wiki/2022_Japanese_Gr... |
1076 | 1093 | 2022 | 20 | 69 | United States Grand Prix | 2022-10-23 | 19:00:00 | https://en.wikipedia.org/wiki/2022_United_Stat... |
1077 | 1094 | 2022 | 21 | 32 | Mexico City Grand Prix | 2022-10-30 | 19:00:00 | https://en.wikipedia.org/wiki/2022_Mexican_Gra... |
1078 | 1095 | 2022 | 22 | 18 | São Paulo Grand Prix | 2022-11-13 | 17:00:00 | https://en.wikipedia.org/wiki/2022_S%C3%A3o_Pa... |
1079 | 1096 | 2022 | 23 | 24 | Abu Dhabi Grand Prix | 2022-11-20 | 13:00:00 | https://en.wikipedia.org/wiki/2022_Abu_Dhabi_G... |
1080 rows × 8 columns
results = pd.read_csv('C:\\Users\\simon\\F1\\results.csv')
results
resultId | raceId | driverId | constructorId | number | grid | position | positionText | positionOrder | points | laps | time | milliseconds | fastestLap | rank | fastestLapTime | fastestLapSpeed | statusId | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 18 | 1 | 1 | 22 | 1 | 1 | 1 | 1 | 10.0 | 58 | 1:34:50.616 | 5690616 | 39 | 2 | 1:27.452 | 218.300 | 1 |
1 | 2 | 18 | 2 | 2 | 3 | 5 | 2 | 2 | 2 | 8.0 | 58 | +5.478 | 5696094 | 41 | 3 | 1:27.739 | 217.586 | 1 |
2 | 3 | 18 | 3 | 3 | 7 | 7 | 3 | 3 | 3 | 6.0 | 58 | +8.163 | 5698779 | 41 | 5 | 1:28.090 | 216.719 | 1 |
3 | 4 | 18 | 4 | 4 | 5 | 11 | 4 | 4 | 4 | 5.0 | 58 | +17.181 | 5707797 | 58 | 7 | 1:28.603 | 215.464 | 1 |
4 | 5 | 18 | 5 | 1 | 23 | 3 | 5 | 5 | 5 | 4.0 | 58 | +18.014 | 5708630 | 43 | 1 | 1:27.418 | 218.385 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
25394 | 25400 | 1073 | 815 | 9 | 11 | 4 | 15 | 15 | 15 | 0.0 | 55 | \N | \N | 51 | 2 | 1:26.419 | 219.993 | 5 |
25395 | 25401 | 1073 | 849 | 3 | 6 | 16 | \N | R | 16 | 0.0 | 50 | \N | \N | 30 | 15 | 1:29.293 | 212.912 | 3 |
25396 | 25402 | 1073 | 841 | 51 | 99 | 14 | \N | R | 17 | 0.0 | 33 | \N | \N | 33 | 16 | 1:29.442 | 212.557 | 6 |
25397 | 25403 | 1073 | 847 | 3 | 63 | 17 | \N | R | 18 | 0.0 | 26 | \N | \N | 23 | 19 | 1:30.647 | 209.732 | 6 |
25398 | 25404 | 1073 | 8 | 51 | 7 | 18 | \N | R | 19 | 0.0 | 25 | \N | \N | 23 | 18 | 1:29.698 | 211.951 | 23 |
25399 rows × 18 columns
seasons = pd.read_csv('C:\\Users\\simon\\F1\\seasons.csv')
seasons
year | url | |
---|---|---|
0 | 2009 | https://en.wikipedia.org/wiki/2009_Formula_One... |
1 | 2008 | https://en.wikipedia.org/wiki/2008_Formula_One... |
2 | 2007 | https://en.wikipedia.org/wiki/2007_Formula_One... |
3 | 2006 | https://en.wikipedia.org/wiki/2006_Formula_One... |
4 | 2005 | https://en.wikipedia.org/wiki/2005_Formula_One... |
... | ... | ... |
68 | 2018 | https://en.wikipedia.org/wiki/2018_Formula_One... |
69 | 2019 | https://en.wikipedia.org/wiki/2019_Formula_One... |
70 | 2020 | https://en.wikipedia.org/wiki/2020_Formula_One... |
71 | 2021 | https://en.wikipedia.org/wiki/2021_Formula_One... |
72 | 2022 | https://en.wikipedia.org/wiki/2022_Formula_One... |
73 rows × 2 columns
status = pd.read_csv('C:\\Users\\simon\\F1\\status.csv')
status
statusId | status | |
---|---|---|
0 | 1 | Finished |
1 | 2 | Disqualified |
2 | 3 | Accident |
3 | 4 | Collision |
4 | 5 | Engine |
... | ... | ... |
132 | 135 | Brake duct |
133 | 136 | Seat |
134 | 137 | Damage |
135 | 138 | Debris |
136 | 139 | Illness |
137 rows × 2 columns
results = pd.read_csv('C:\\Users\\simon\\F1\\results.csv')
results
resultId | raceId | driverId | constructorId | number | grid | position | positionText | positionOrder | points | laps | time | milliseconds | fastestLap | rank | fastestLapTime | fastestLapSpeed | statusId | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 18 | 1 | 1 | 22 | 1 | 1 | 1 | 1 | 10.0 | 58 | 1:34:50.616 | 5690616 | 39 | 2 | 1:27.452 | 218.300 | 1 |
1 | 2 | 18 | 2 | 2 | 3 | 5 | 2 | 2 | 2 | 8.0 | 58 | +5.478 | 5696094 | 41 | 3 | 1:27.739 | 217.586 | 1 |
2 | 3 | 18 | 3 | 3 | 7 | 7 | 3 | 3 | 3 | 6.0 | 58 | +8.163 | 5698779 | 41 | 5 | 1:28.090 | 216.719 | 1 |
3 | 4 | 18 | 4 | 4 | 5 | 11 | 4 | 4 | 4 | 5.0 | 58 | +17.181 | 5707797 | 58 | 7 | 1:28.603 | 215.464 | 1 |
4 | 5 | 18 | 5 | 1 | 23 | 3 | 5 | 5 | 5 | 4.0 | 58 | +18.014 | 5708630 | 43 | 1 | 1:27.418 | 218.385 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
25394 | 25400 | 1073 | 815 | 9 | 11 | 4 | 15 | 15 | 15 | 0.0 | 55 | \N | \N | 51 | 2 | 1:26.419 | 219.993 | 5 |
25395 | 25401 | 1073 | 849 | 3 | 6 | 16 | \N | R | 16 | 0.0 | 50 | \N | \N | 30 | 15 | 1:29.293 | 212.912 | 3 |
25396 | 25402 | 1073 | 841 | 51 | 99 | 14 | \N | R | 17 | 0.0 | 33 | \N | \N | 33 | 16 | 1:29.442 | 212.557 | 6 |
25397 | 25403 | 1073 | 847 | 3 | 63 | 17 | \N | R | 18 | 0.0 | 26 | \N | \N | 23 | 19 | 1:30.647 | 209.732 | 6 |
25398 | 25404 | 1073 | 8 | 51 | 7 | 18 | \N | R | 19 | 0.0 | 25 | \N | \N | 23 | 18 | 1:29.698 | 211.951 | 23 |
25399 rows × 18 columns
laimi = results[results['positionText']=='1'].groupby('driverId')['positionText'].count().sort_values()
laimi
driverId 386 1 525 1 628 1 255 1 611 1 ... 102 41 117 51 20 53 30 91 1 103 Name: positionText, Length: 111, dtype: int64
grid = results[results['grid']==1].groupby('driverId')['grid'].count().sort_values()
grid
driverId 846 1 654 1 123 1 152 1 633 1 ... 373 34 20 57 102 65 30 68 1 103 Name: grid, Length: 107, dtype: int64
lenk_sk = results[['raceId', 'driverId']].groupby('driverId')['raceId'].count().sort_values()
lenk_sk
driverId 378 1 443 1 426 1 422 1 421 1 ... 30 308 18 309 22 326 4 336 8 352 Name: raceId, Length: 853, dtype: int64
proc_1 = (laimi / lenk_sk) * 100
proc_1.dropna(how='any').sort_values(ascending=False)
driverId 766 50.000000 579 41.379310 657 40.000000 647 36.111111 1 35.763889 ... 5 0.892857 200 0.877193 44 0.632911 55 0.495050 15 0.390625 Length: 111, dtype: float64
proc_1.iloc[29]
29.545454545454547
proc_1.iloc[0]
35.76388888888889
proc_2 = grid / lenk_sk * 100
proc_2.dropna(how='any').sort_values(ascending=False)
driverId 579 50.000000 373 46.575342 102 40.123457 647 38.888889 1 35.763889 ... 304 0.892857 123 0.609756 807 0.549451 2 0.543478 110 0.467290 Length: 107, dtype: float64
proc_2.iloc[29]
22.07792207792208
proc_2.iloc[0]
35.76388888888889
print(f'Pagal duombazės duomenis Micheal Schumacher dalyvavo {lenk_sk[30]} varžybose, iš kurių laimėjo {laimi[30]}, o pradėjo varžybas pirmoje pozicijoje {grid[30]} kartus. Tai kiek varžybų dalyvavo ir kiek jų laimėjo procentaliai jo efektivumas yra {proc_1[30]}. Lygininat kvalifikacijos ir lenktynių pozicijas, procentaliai efektivumas yra {proc_2[30]}.')
Pagal duombazės duomenis Micheal Schumacher dalyvavo 308 varžybose, iš kurių laimėjo 91, o pradėjo varžybas pirmoje pozicijoje 68 kartus. Tai kiek varžybų dalyvavo ir kiek jų laimėjo procentaliai jo efektivumas yra 29.545454545454547. Lygininat kvalifikacijos ir lenktynių pozicijas, procentaliai efektivumas yra 22.07792207792208.
print(f'Lygininat M.Schumacher su kitu 7 kartus pasaulio čempionu L. Hamiltonu, mes matome, kad jisai dalyvavo {lenk_sk[1]} varžybose, iš kurių laimėjo {laimi[1]}, procentaliai jo efektyvumas yra {proc_1[1]}. Kalbant apie kvalifikaciją, Hamiltonas iškovojo {grid[1]} kartus pirmąją vietą ir jo efektyvumas procentaliai yra {proc_2[1]}')
Lygininat M.Schumacher su kitu 7 kartus pasaulio čempionu L. Hamiltonu, mes matome, kad jisai dalyvavo 288 varžybose, iš kurių laimėjo 103, procentaliai jo efektyvumas yra 35.76388888888889. Kalbant apie kvalifikaciją, Hamiltonas iškovojo 103 kartus pirmąją vietą ir jo efektyvumas procentaliai yra 35.76388888888889
df = pd.DataFrame({'M.Schumacher': [7, 308, 91, 68, 29.55, 22.08], 'L.Hamilton': [7, 288, 103, 103, 35.76, 35.76], 'Skirtumas':[0, 20, 12, 35, 6.21, 13.68]}, index=['Laimėti čempionatai', 'Viso važiuotu varžybų', 'Viso laimėtu varžybu', 'Kvalifikacija P1', 'Proc. Varžybos vs laimėjimų sk.', 'Proc. Kvalifikacija vs varžybų sk.'])
df
M.Schumacher | L.Hamilton | Skirtumas | |
---|---|---|---|
Laimėti čempionatai | 7.00 | 7.00 | 0.00 |
Viso važiuotu varžybų | 308.00 | 288.00 | 20.00 |
Viso laimėtu varžybu | 91.00 | 103.00 | 12.00 |
Kvalifikacija P1 | 68.00 | 103.00 | 35.00 |
Proc. Varžybos vs laimėjimų sk. | 29.55 | 35.76 | 6.21 |
Proc. Kvalifikacija vs varžybų sk. | 22.08 | 35.76 | 13.68 |
df = pd.DataFrame({'M.Schumacher': [7, 308, 91, 68, 29.55, 22.08], 'L.Hamilton': [7, 288, 103, 103, 35.76, 35.76]}, index=['Laimėti čempionatai', 'Viso važiuotu varžybų', 'Viso laimėtu varžybu', 'Kvalifikacija P1', 'Proc. Varžybos vs laimėjimų sk.', 'Proc. Kvalifikacija vs varžybų sk.'])
df
M.Schumacher | L.Hamilton | |
---|---|---|
Laimėti čempionatai | 7.00 | 7.00 |
Viso važiuotu varžybų | 308.00 | 288.00 |
Viso laimėtu varžybu | 91.00 | 103.00 |
Kvalifikacija P1 | 68.00 | 103.00 |
Proc. Varžybos vs laimėjimų sk. | 29.55 | 35.76 |
Proc. Kvalifikacija vs varžybų sk. | 22.08 | 35.76 |
df.plot.area()
plt.xticks(rotation ='vertical')
(array([-1., 0., 1., 2., 3., 4., 5., 6.]), [Text(-1.0, 0, 'Proc. Kvalifikacija vs varžybų sk.'), Text(0.0, 0, 'Laimėti čempionatai'), Text(1.0, 0, 'Viso važiuotu varžybų'), Text(2.0, 0, 'Viso laimėtu varžybu'), Text(3.0, 0, 'Kvalifikacija P1'), Text(4.0, 0, 'Proc. Varžybos vs laimėjimų sk.'), Text(5.0, 0, 'Proc. Kvalifikacija vs varžybų sk.'), Text(6.0, 0, '')])
drivers.iloc[29]
driverId 30 driverRef michael_schumacher number \N code MSC forename Michael surname Schumacher dob 1969-01-03 nationality German url http://en.wikipedia.org/wiki/Michael_Schumacher Name: 29, dtype: object
drivers.iloc[0]
driverId 1 driverRef hamilton number 44 code HAM forename Lewis surname Hamilton dob 1985-01-07 nationality British url http://en.wikipedia.org/wiki/Lewis_Hamilton Name: 0, dtype: object
drivers[drivers['surname'] == 'Schumacher']
driverId | driverRef | number | code | forename | surname | dob | nationality | url | |
---|---|---|---|---|---|---|---|---|---|
22 | 23 | ralf_schumacher | \N | SCH | Ralf | Schumacher | 1975-06-30 | German | http://en.wikipedia.org/wiki/Ralf_Schumacher |
29 | 30 | michael_schumacher | \N | MSC | Michael | Schumacher | 1969-01-03 | German | http://en.wikipedia.org/wiki/Michael_Schumacher |
852 | 854 | mick_schumacher | 47 | MSC | Mick | Schumacher | 1999-03-22 | German | http://en.wikipedia.org/wiki/Mick_Schumacher |
drivers[drivers['surname'] == 'Hamilton']
driverId | driverRef | number | code | forename | surname | dob | nationality | url | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | hamilton | 44 | HAM | Lewis | Hamilton | 1985-01-07 | British | http://en.wikipedia.org/wiki/Lewis_Hamilton |
708 | 708 | duncan_hamilton | \N | \N | Duncan | Hamilton | 1920-04-30 | British | http://en.wikipedia.org/wiki/Duncan_Hamilton_(... |
qualy = pd.read_csv('C:\\Users\\simon\\F1\\qualifying.csv')
qualy
qualifyId | raceId | driverId | constructorId | number | position | q1 | q2 | q3 | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 18 | 1 | 1 | 22 | 1 | 1:26.572 | 1:25.187 | 1:26.714 |
1 | 2 | 18 | 9 | 2 | 4 | 2 | 1:26.103 | 1:25.315 | 1:26.869 |
2 | 3 | 18 | 5 | 1 | 23 | 3 | 1:25.664 | 1:25.452 | 1:27.079 |
3 | 4 | 18 | 13 | 6 | 2 | 4 | 1:25.994 | 1:25.691 | 1:27.178 |
4 | 5 | 18 | 2 | 2 | 3 | 5 | 1:25.960 | 1:25.518 | 1:27.236 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
9130 | 9171 | 1073 | 849 | 3 | 6 | 16 | 1:24.338 | \N | \N |
9131 | 9172 | 1073 | 847 | 3 | 63 | 17 | 1:24.423 | \N | \N |
9132 | 9173 | 1073 | 8 | 51 | 7 | 18 | 1:24.779 | \N | \N |
9133 | 9174 | 1073 | 854 | 210 | 47 | 19 | 1:24.906 | \N | \N |
9134 | 9175 | 1073 | 853 | 210 | 9 | 20 | 1:25.685 | \N | \N |
9135 rows × 9 columns
qualy[['driverId', 'position']].groupby('driverId')['position'].mean().sort_values(ascending=True).head(10)
driverId 102 1.000000 1 3.350694 95 4.833333 71 5.372881 830 5.638298 822 5.648045 20 5.666667 30 5.666667 77 5.760870 31 6.031250 Name: position, dtype: float64
drivers.iloc[[101, 0, 94, 70, 829, 821, 19, 29, 76, 30]]
driverId | driverRef | number | code | forename | surname | dob | nationality | url | |
---|---|---|---|---|---|---|---|---|---|
101 | 102 | senna | \N | \N | Ayrton | Senna | 1960-03-21 | Brazilian | http://en.wikipedia.org/wiki/Ayrton_Senna |
0 | 1 | hamilton | 44 | HAM | Lewis | Hamilton | 1985-01-07 | British | http://en.wikipedia.org/wiki/Lewis_Hamilton |
94 | 95 | mansell | \N | \N | Nigel | Mansell | 1953-08-08 | British | http://en.wikipedia.org/wiki/Nigel_Mansell |
70 | 71 | damon_hill | \N | \N | Damon | Hill | 1960-09-17 | British | http://en.wikipedia.org/wiki/Damon_Hill |
829 | 830 | max_verstappen | 33 | VER | Max | Verstappen | 1997-09-30 | Dutch | http://en.wikipedia.org/wiki/Max_Verstappen |
821 | 822 | bottas | 77 | BOT | Valtteri | Bottas | 1989-08-28 | Finnish | http://en.wikipedia.org/wiki/Valtteri_Bottas |
19 | 20 | vettel | 5 | VET | Sebastian | Vettel | 1987-07-03 | German | http://en.wikipedia.org/wiki/Sebastian_Vettel |
29 | 30 | michael_schumacher | \N | MSC | Michael | Schumacher | 1969-01-03 | German | http://en.wikipedia.org/wiki/Michael_Schumacher |
76 | 77 | berger | \N | \N | Gerhard | Berger | 1959-08-27 | Austrian | http://en.wikipedia.org/wiki/Gerhard_Berger |
30 | 31 | montoya | \N | MON | Juan | Pablo Montoya | 1975-09-20 | Colombian | http://en.wikipedia.org/wiki/Juan_Pablo_Montoya |
10 blogiausiai kvalifikavusių vairuotojų:
qualy[['driverId', 'position']].groupby('driverId')['position'].mean().sort_values(ascending=True).tail(10)
driverId 812 23.181818 93 23.285714 115 23.333333 86 23.750000 101 24.333333 98 24.333333 113 25.500000 111 25.714286 107 26.000000 108 26.500000 Name: position, dtype: float64
drivers.iloc[[811, 92, 114, 85, 100, 97, 112, 110, 106, 107]]
driverId | driverRef | number | code | forename | surname | dob | nationality | url | |
---|---|---|---|---|---|---|---|---|---|
811 | 812 | chandhok | \N | CHA | Karun | Chandhok | 1984-01-19 | Indian | http://en.wikipedia.org/wiki/Karun_Chandhok |
92 | 93 | schiattarella | \N | \N | Domenico | Schiattarella | 1967-11-17 | Italian | http://en.wikipedia.org/wiki/Domenico_Schiatta... |
114 | 115 | noda | \N | \N | Hideki | Noda | 1969-03-07 | Japanese | http://en.wikipedia.org/wiki/Hideki_Noda |
85 | 86 | lavaggi | \N | \N | Giovanni | Lavaggi | 1958-02-18 | Italian | http://en.wikipedia.org/wiki/Giovanni_Lavaggi |
100 | 101 | brabham | \N | \N | David | Brabham | 1965-09-05 | Australian | http://en.wikipedia.org/wiki/David_Brabham |
97 | 98 | deletraz | \N | \N | Jean-Denis | Délétraz | 1963-10-01 | Swiss | http://en.wikipedia.org/wiki/Jean-Denis_Deletraz |
112 | 113 | adams | \N | \N | Philippe | Adams | 1969-11-19 | Belgian | http://en.wikipedia.org/wiki/Philippe_Adams |
110 | 111 | gounon | \N | \N | Jean-Marc | Gounon | 1963-01-01 | French | http://en.wikipedia.org/wiki/Jean-Marc_Gounon |
106 | 107 | ratzenberger | \N | \N | Roland | Ratzenberger | 1960-07-04 | Austrian | http://en.wikipedia.org/wiki/Roland_Ratzenberger |
107 | 108 | belmondo | \N | \N | Paul | Belmondo | 1963-04-23 | French | http://en.wikipedia.org/wiki/Paul_Belmondo |
qualy[['driverId', 'position']].groupby('driverId')['position'].mean().sort_values(ascending=True)
driverId 102 1.000000 1 3.350694 95 4.833333 71 5.372881 830 5.638298 ... 98 24.333333 113 25.500000 111 25.714286 107 26.000000 108 26.500000 Name: position, Length: 164, dtype: float64
races['name'].value_counts()
British Grand Prix 73 Italian Grand Prix 73 Monaco Grand Prix 68 Belgian Grand Prix 67 German Grand Prix 64 French Grand Prix 62 Spanish Grand Prix 52 Canadian Grand Prix 51 Brazilian Grand Prix 47 United States Grand Prix 43 Hungarian Grand Prix 37 Australian Grand Prix 36 Japanese Grand Prix 36 Austrian Grand Prix 35 Dutch Grand Prix 32 San Marino Grand Prix 26 South African Grand Prix 23 European Grand Prix 23 Argentine Grand Prix 20 Mexican Grand Prix 20 Malaysian Grand Prix 19 Bahrain Grand Prix 18 Portuguese Grand Prix 18 Chinese Grand Prix 16 Abu Dhabi Grand Prix 14 Singapore Grand Prix 13 Indianapolis 500 11 Turkish Grand Prix 9 Russian Grand Prix 9 United States Grand Prix West 8 Detroit Grand Prix 7 Swiss Grand Prix 6 Swedish Grand Prix 6 Azerbaijan Grand Prix 5 Korean Grand Prix 4 Indian Grand Prix 3 Emilia Romagna Grand Prix 3 Pacific Grand Prix 2 Saudi Arabian Grand Prix 2 São Paulo Grand Prix 2 Luxembourg Grand Prix 2 Styrian Grand Prix 2 Caesars Palace Grand Prix 2 Mexico City Grand Prix 2 Dallas Grand Prix 1 Sakhir Grand Prix 1 Qatar Grand Prix 1 70th Anniversary Grand Prix 1 Eifel Grand Prix 1 Tuscan Grand Prix 1 Pescara Grand Prix 1 Moroccan Grand Prix 1 Miami Grand Prix 1 Name: name, dtype: int64
races['name'].value_counts().plot.bar()
<AxesSubplot:>
results[['fastestLapTime', 'driverId', 'raceId']].sort_values('fastestLapTime')
fastestLapTime | driverId | raceId | |
---|---|---|---|
24928 | 0:55.404 | 847 | 1046 |
24927 | 0:56.563 | 822 | 1046 |
24920 | 0:56.789 | 815 | 1046 |
24932 | 0:56.887 | 841 | 1046 |
24931 | 0:56.905 | 20 | 1046 |
... | ... | ... | ... |
10781 | \N | 158 | 456 |
10780 | \N | 197 | 456 |
10779 | \N | 173 | 456 |
10787 | \N | 95 | 456 |
12699 | \N | 178 | 524 |
25399 rows × 3 columns
races[['raceId', 'name', 'date']].iloc[1033]
raceId 1046 name Sakhir Grand Prix date 2020-12-06 Name: 1033, dtype: object
drivers[['driverId', 'forename', 'surname']].iloc[845]
driverId 847 forename George surname Russell Name: 845, dtype: object
cons_standings = pd.read_csv('C:\\Users\\simon\\F1\\constructor_standings.csv')
cons_standings.sort_values('position',ascending=False)
constructorStandingsId | raceId | constructorId | points | position | positionText | wins | |
---|---|---|---|---|---|---|---|
9926 | 19934 | 728 | 173 | 0.0 | 22 | 22 | 0 |
10078 | 23145 | 575 | 74 | 0.0 | 21 | 21 | 0 |
7231 | 23427 | 559 | 69 | 0.0 | 21 | 21 | 0 |
9090 | 19935 | 728 | 179 | 0.0 | 21 | 21 | 0 |
4114 | 8948 | 364 | 44 | 0.0 | 20 | 20 | 0 |
... | ... | ... | ... | ... | ... | ... | ... |
8235 | 22018 | 631 | 32 | 61.0 | 1 | 1 | 5 |
8223 | 22006 | 630 | 32 | 61.0 | 1 | 1 | 5 |
8211 | 21994 | 629 | 32 | 61.0 | 1 | 1 | 5 |
8199 | 21982 | 628 | 32 | 52.0 | 1 | 1 | 4 |
6358 | 11410 | 505 | 3 | 57.0 | 1 | 1 | 4 |
12716 rows × 7 columns
cons_standings[cons_standings['position'] == 1].groupby('constructorId')['positionText'].count().sort_values(ascending=False)
constructorId 6 229 1 165 131 145 3 114 9 69 4 46 32 44 22 29 172 23 170 20 23 17 25 16 191 16 66 14 180 12 196 11 34 6 87 4 27 4 118 3 37 3 59 1 167 1 51 1 2 1 Name: positionText, dtype: int64
constructors[constructors['constructorId'] == 6]
constructorId | constructorRef | name | nationality | url | |
---|---|---|---|---|---|
5 | 6 | ferrari | Ferrari | Italian | http://en.wikipedia.org/wiki/Scuderia_Ferrari |
constructors.head(18)
constructorId | constructorRef | name | nationality | url | |
---|---|---|---|---|---|
0 | 1 | mclaren | McLaren | British | http://en.wikipedia.org/wiki/McLaren |
1 | 2 | bmw_sauber | BMW Sauber | German | http://en.wikipedia.org/wiki/BMW_Sauber |
2 | 3 | williams | Williams | British | http://en.wikipedia.org/wiki/Williams_Grand_Pr... |
3 | 4 | renault | Renault | French | http://en.wikipedia.org/wiki/Renault_in_Formul... |
4 | 5 | toro_rosso | Toro Rosso | Italian | http://en.wikipedia.org/wiki/Scuderia_Toro_Rosso |
5 | 6 | ferrari | Ferrari | Italian | http://en.wikipedia.org/wiki/Scuderia_Ferrari |
6 | 7 | toyota | Toyota | Japanese | http://en.wikipedia.org/wiki/Toyota_Racing |
7 | 8 | super_aguri | Super Aguri | Japanese | http://en.wikipedia.org/wiki/Super_Aguri_F1 |
8 | 9 | red_bull | Red Bull | Austrian | http://en.wikipedia.org/wiki/Red_Bull_Racing |
9 | 10 | force_india | Force India | Indian | http://en.wikipedia.org/wiki/Racing_Point_Forc... |
10 | 11 | honda | Honda | Japanese | http://en.wikipedia.org/wiki/Honda_Racing_F1 |
11 | 12 | spyker | Spyker | Dutch | http://en.wikipedia.org/wiki/Spyker_F1 |
12 | 13 | mf1 | MF1 | Russian | http://en.wikipedia.org/wiki/Midland_F1_Racing |
13 | 14 | spyker_mf1 | Spyker MF1 | Dutch | http://en.wikipedia.org/wiki/Midland_F1_Racing |
14 | 15 | sauber | Sauber | Swiss | http://en.wikipedia.org/wiki/Sauber |
15 | 16 | bar | BAR | British | http://en.wikipedia.org/wiki/British_American_... |
16 | 17 | jordan | Jordan | Irish | http://en.wikipedia.org/wiki/Jordan_Grand_Prix |
17 | 18 | minardi | Minardi | Italian | http://en.wikipedia.org/wiki/Minardi |
results[['driverId', 'constructorId', 'positionText']]
driverId | constructorId | positionText | |
---|---|---|---|
0 | 1 | 1 | 1 |
1 | 2 | 2 | 2 |
2 | 3 | 3 | 3 |
3 | 4 | 4 | 4 |
4 | 5 | 1 | 5 |
... | ... | ... | ... |
25394 | 815 | 9 | 15 |
25395 | 849 | 3 | R |
25396 | 841 | 51 | R |
25397 | 847 | 3 | R |
25398 | 8 | 51 | R |
25399 rows × 3 columns
results[(results['positionText'] == '1') |
(results['positionText'] == '2') |
(results['positionText'] == '3')].groupby('constructorId')['positionText'].count().sort_values(ascending=False)
constructorId 6 790 1 477 3 313 131 264 9 206 ... 46 1 132 1 109 1 125 1 181 1 Name: positionText, Length: 76, dtype: int64
constructors[(constructors['constructorId'] == 1) |
(constructors['constructorId'] == 6) |
(constructors['constructorId'] == 3)|
(constructors['constructorId'] == 131)]
constructorId | constructorRef | name | nationality | url | |
---|---|---|---|---|---|
0 | 1 | mclaren | McLaren | British | http://en.wikipedia.org/wiki/McLaren |
2 | 3 | williams | Williams | British | http://en.wikipedia.org/wiki/Williams_Grand_Pr... |
5 | 6 | ferrari | Ferrari | Italian | http://en.wikipedia.org/wiki/Scuderia_Ferrari |
129 | 131 | mercedes | Mercedes | German | http://en.wikipedia.org/wiki/Mercedes-Benz_in_... |
constructors.head(30)
constructorId | constructorRef | name | nationality | url | |
---|---|---|---|---|---|
0 | 1 | mclaren | McLaren | British | http://en.wikipedia.org/wiki/McLaren |
1 | 2 | bmw_sauber | BMW Sauber | German | http://en.wikipedia.org/wiki/BMW_Sauber |
2 | 3 | williams | Williams | British | http://en.wikipedia.org/wiki/Williams_Grand_Pr... |
3 | 4 | renault | Renault | French | http://en.wikipedia.org/wiki/Renault_in_Formul... |
4 | 5 | toro_rosso | Toro Rosso | Italian | http://en.wikipedia.org/wiki/Scuderia_Toro_Rosso |
5 | 6 | ferrari | Ferrari | Italian | http://en.wikipedia.org/wiki/Scuderia_Ferrari |
6 | 7 | toyota | Toyota | Japanese | http://en.wikipedia.org/wiki/Toyota_Racing |
7 | 8 | super_aguri | Super Aguri | Japanese | http://en.wikipedia.org/wiki/Super_Aguri_F1 |
8 | 9 | red_bull | Red Bull | Austrian | http://en.wikipedia.org/wiki/Red_Bull_Racing |
9 | 10 | force_india | Force India | Indian | http://en.wikipedia.org/wiki/Racing_Point_Forc... |
10 | 11 | honda | Honda | Japanese | http://en.wikipedia.org/wiki/Honda_Racing_F1 |
11 | 12 | spyker | Spyker | Dutch | http://en.wikipedia.org/wiki/Spyker_F1 |
12 | 13 | mf1 | MF1 | Russian | http://en.wikipedia.org/wiki/Midland_F1_Racing |
13 | 14 | spyker_mf1 | Spyker MF1 | Dutch | http://en.wikipedia.org/wiki/Midland_F1_Racing |
14 | 15 | sauber | Sauber | Swiss | http://en.wikipedia.org/wiki/Sauber |
15 | 16 | bar | BAR | British | http://en.wikipedia.org/wiki/British_American_... |
16 | 17 | jordan | Jordan | Irish | http://en.wikipedia.org/wiki/Jordan_Grand_Prix |
17 | 18 | minardi | Minardi | Italian | http://en.wikipedia.org/wiki/Minardi |
18 | 19 | jaguar | Jaguar | British | http://en.wikipedia.org/wiki/Jaguar_Racing |
19 | 20 | prost | Prost | French | http://en.wikipedia.org/wiki/Prost_Grand_Prix |
20 | 21 | arrows | Arrows | British | http://en.wikipedia.org/wiki/Arrows_Grand_Prix... |
21 | 22 | benetton | Benetton | Italian | http://en.wikipedia.org/wiki/Benetton_Formula |
22 | 23 | brawn | Brawn | British | http://en.wikipedia.org/wiki/Brawn_GP |
23 | 24 | stewart | Stewart | British | http://en.wikipedia.org/wiki/Stewart_Grand_Prix |
24 | 25 | tyrrell | Tyrrell | British | http://en.wikipedia.org/wiki/Tyrrell_Racing |
25 | 26 | lola | Lola | British | http://en.wikipedia.org/wiki/MasterCard_Lola |
26 | 27 | ligier | Ligier | French | http://en.wikipedia.org/wiki/Ligier |
27 | 28 | forti | Forti | Italian | http://en.wikipedia.org/wiki/Forti |
28 | 29 | footwork | Footwork | British | http://en.wikipedia.org/wiki/Footwork_Arrows |
29 | 30 | pacific | Pacific | British | http://en.wikipedia.org/wiki/Pacific_Racing |
1. Micheal Schumacher yra geriausias F1 vairutojas.
Hipotezė nepatvirtinta, nes, nepaisant to, kad M.Schumacher turi 7 pasaulio čempionų titulus, kaip ir Sir L. Hamilton
visi kiti rezultatai buvo pagerinti Sir Lewis Hamilton.
2. Į 10 geriausių kvalifikacijoje pasirodžiusių vairuotojų įeina, Max Verstappen.
Hipotezė patvirtinta. M. Verstappen yra 5 vietoje iš 10.
3. Daugiausiai kartų varžybos yra vykusios Italijoje.
Taip Italijoje vyko F1 varžybos nuo pačių pradžių, t.y. 1950 m. Taip pat, kaip ir Didžiojoje Britanijoje
4. Greičiausiai apvažiuotas ratas priklauso Sir Lewis Hamilton.
Greičiasias apvažiuotas ratas priklauso George Russel, 2020-12-06, Sakhir Grand Prix, Bahreine.
5. Daugiausiai laimėjimų turi Ferrari komanda.
Taip, iš viso Ferrai komanda 1950 - 2021 yra laimėjus 299 pirmųjų vietų.
6. Daugiausiai 1-3 vietų laimėjimų turi Mclearn komanda.
Daugiausiai 1-3 vietų laimėjo Ferrai komanda. Mclearn yra 1950 - 2021 laikotarpiu 2-oje vietoje.